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Abstract
This paper extends from acoustic to elastic the theory for nonlinear direct
amplitude versus angle (AVA) inversion and data-driven depth imaging for a
depth-variable medium published by the authors in this journal. The method
which is derived by direct inversion of the forward model of elastic single
compressional wave scattering requires no information of the velocities and
density, except for the velocities and density of the uppermost layer which
is the acoustic reference medium where the source and receiver are situated
at finite distance above the elastic scattering medium. The vertically varying
velocities and density of the scattering medium are estimated in a data-driven
manner solely from the angle- and depth-dependent Born potential depth profile
computed by constant-velocity imaging.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In reflection seismology a long-standing challenge has been to develop robust and reliable
inverse methods that determine the subsurface medium parameters from reflection seismic
data with a minimum or even no use of a priori information. General inverse geophysical
methods have been the subject of many research papers since the 1970s. In particular, inverse
scattering methods from the mainstream physics were introduced to the petroleum exploration
industry during the late 1970s and early 1980s (see, e.g., Razavy (1975), Cohen and Bleistein
(1979), Symes (1981) and Weglein et al (1981)). The recent developments presented by
Weglein and coworkers (see, e.g., Weglein et al 2003) related to the inverse scattering series
have stimulated new interest in formulating geophysical inversion in the language of scattering
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theory. The inverse problem, of course, is not unique to geophysics. One of the first scientists
to treat the inverse problem was Lord Rayleigh, who considered in 1877 the problem of finding
the density distribution of a string from knowledge of its vibrations. With the introduction of
the Schrödinger equation to describe the quantum-mechanical model the problem of inverse
scattering received high attention. Over the years, the inverse scattering procedures found
widespread use in classical physics, where one of the most powerful non quantum-mechanical
applications was in geophysics.

During recent years, inverse scattering theories related to seismic have been revisited and
further developed. For an introduction to the inverse scattering series and results in the seismic
field, the reader is referred to Weglein et al (2003, 2007), Innanen (2003) and Shaw (2005).
Recently, Amundsen et al (2005, 2006) have addressed the 1D inverse scattering formalism,
seeking approximate solutions to imaging objectives associated with primary scattering. For
an acoustic layered medium Amundsen et al (2006) showed that the forward model derived
in the WKBJ approximation can be inverted by following a three-step procedure. The current
paper provides further insights into the inversion of the WKBJ forward model when the
stratified medium is elastic with an acoustic top halfspace. To this end, the forward model
derived in Amundsen et al (2006) must be extended from acoustic to elastic, and the inversion
process must invert for both compressional and shear wave velocities in addition to density.

The paper is organized as follows. First, we derive the general physical forward model for
P–P, P–S, S–P and S–S scattering for stratified media. Here, P and S refer to the compressional
wave and shear wave, respectively. Then we derive the differential equation that governs
single P–P scattering of elastic waves. The incident downgoing P-wave is described by
the zero-order WKBJ approximation. The scattered P-wave is described by the first-order
WKBJ approximation which takes into account the coupling of the incident wave with
the scattered wave (Bremmer 1951, Ursin 1984). Second, the forward model is used as
the mathematical framework for relating the angle-dependent Born potential to the single-
scattering P–P response of a stratified elastic medium. Using the known constant velocity and
density acoustic reference medium, the angle-dependent Born potential is simply obtained
by trace integration of the scattered data transformed to the time intercept-slowness domain,
by which the primary reflection events are placed at depths computed linearly only using the
constant reference velocity and the travel times of primaries. Amplitude versus angle (AVA)
analysis of the angle-dependent Born potential gives an estimate within the layer boundaries
of the zero-angle Born potential depth profile what the depth-dependent velocity and density
profiles are. Since the layer boundaries are severely mislocated in the zero-angle Born potential
depth profile, the AVA analysis produces estimates of the amplitude of the actual velocity and
density profiles but at wrong depths. We call the mislocated velocity and density profiles
‘squeezed’ profiles as they appear like the actual velocity and density profiles when the depth
axis is squeezed. From the information in the squeezed P-wave velocity profile we show in
the WKBJ approximation that the reflector positions in both the squeezed P-wave and S-wave
velocity and squeezed density profiles can be moved with high precision towards their correct
spatial location without introducing any information about the subsurface. Finally, a simple
noise-free example is constructed to show how the procedures introduced in this paper can be
applied to obtain the velocity and density profiles for the stratified elastic medium from its
P–P scattering response.

2. The forward scattering model

In this section we present the forward model of elastic scattering. For a stratified medium it is
standard procedure to transform the physical field variables by applying a Fourier transform
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with respect to horizontal spatial coordinates. This transforms the elastic equations into a
system of first-order differential equations.

Let ω denote circular frequency and x = (x, y, z) the Cartesian coordinates. The depth
axis is positive downwards. The horizontally layered elastic medium, where the P- and S-
wave velocities cP = cP (z) and cS = cS(z), respectively, and density ρ = ρ(z) are functions
of depth, is embedded in a homogeneous reference medium with wave velocities cP 0 and
cS0 and density ρ0. The wave-propagation velocities are related to the Lamé parameters, as
cP = √

(λ + 2µ)/ρ and cS = √
µ/ρ.

In the frequency-space domain, in a source-free region the system of equations governing
the wave motion consists of the equation of motion,

−iωρṼ1 = ∂1τ11 + ∂2τ12 + ∂3τ13, (1)

−iωρṼ2 = ∂1τ21 + ∂2τ22 + ∂3τ23, (2)

−iωρṼ3 = ∂1τ31 + ∂2τ32 + ∂3τ33, (3)

and the constitutive relation,

−iωτ11 = λ(∂1Ṽ1 + ∂2Ṽ2 + ∂3Ṽ3) + 2µ∂1Ṽ1, (4)

−iωτ22 = λ(∂1Ṽ1 + ∂2Ṽ2 + ∂3Ṽ3) + 2µ∂2Ṽ2, (5)

−iωτ33 = λ(∂1Ṽ1 + ∂2Ṽ2 + ∂3Ṽ3) + 2µ∂3Ṽ3, (6)

−iωτ12 = −iωτ21 = µ(∂2Ṽ1 + ∂1Ṽ2), (7)

−iωτ23 = −iωτ32 = µ(∂3Ṽ2 + ∂2Ṽ3), (8)

−iωτ13 = −iωτ31 = µ(∂1Ṽ3 + ∂3Ṽ1), (9)

where τij = τij (x, ω) is the stress, Ṽi = Ṽi(x, ω) is the particle velocity and ∂i is the partial
derivative operator with respect to xi .

We take the particle-velocity vector Ṽ
T = (Ṽ1, Ṽ2, Ṽ3) and the vertical-traction vector

T̃
T = (T̃1, T̃2, T̃3) = (τ13, τ23, τ33) as the field quantities that characterize the elastic-wave

propagation. Hence, the stresses τ11, τ22, τ12 must be algebraically eliminated from the above
equations. To this end, substitute equation (6) for ∂3Ṽ3 into equations (4) and (5). Then,
eliminate τ11, τ22, τ12 in equations (1) and (2) by using equations (4), (5) and (7). Bring ∂3

terms to the left, all other terms to the right. By introducing the particle-velocity vertical-
traction vector

B̃ = (Ṽ
T
, T̃

T
)
T

, (10)

the equation of motion and the constitutive relation can be written as an ordinary matrix-vector
differential equation

d

dz
B̃(x, ω) = −iωÃ(z)B̃(x, ω), (11)

where the elastodynamic system matrix, Ã, depending on material properties, has the form

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 s∂x
1
µ

0 0

0 0 s∂y 0 1
µ

0
λ

λ+2µ
s∂x

λ
λ+2µ

s∂y 0 0 0 1
λ+2µ

ρ − θs2∂2
x − µs2

(
∂2
x + ∂2

y

) −θs2∂x∂y 0 0 0 λ
λ+2µ

s∂x

−θs2∂x∂y ρ − θs2∂2
y − µs2

(
∂2
x + ∂2

y

)
0 0 0 λ

λ+2µ
s∂y

0 0 ρ s∂x s∂y 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(12)
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where θ = µ(3λ + 2µ)/(λ + 2µ), and s = (iω)−1. The boundary conditions state continuity
of B̃ at welded interfaces. In addition, we impose the radiation conditions that the only
downgoing wave in the source layer is that radiated by the source, and that there are no
upgoing waves in the lower halfspace.

We introduce the Fourier transform with respect to horizontal spatial coordinates

G(kx, ky) =
∫ ∞

−∞

∫ ∞

−∞
dx dy exp[−i(kxx + kyy)]G̃(x, y), (13)

with inverse

G̃(x, y) = 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dkx dky exp[i(kxx + kyy)]G(kx, ky). (14)

Here, (kx, ky) are horizontal wavenumbers conjugate to (x, y). We introduce the radial
wavenumber k2

r = k2
x + k2

y , the horizontal slownesses px = kx/ω and py = ky/ω, the radial

slowness p2 = p2
x + p2

y , the P-wave vertical slowness QP (z) =
√

c−2
P (z) − p2 and the S-

wave vertical slowness QS(z) =
√

c−2
S (z) − p2. In the reference medium the wavenumbers

are denoted by kP = ω/cP 0 and kS = ω/cS0, and the vertical slownesses are denoted by
qP =

√
cP 0

−2 − p2 and qS =
√

cS0
−2 − p2 for P- and S-waves, respectively. For notational

convenience we define κP = (cP 0qP )−1 and κS = (cS0qS)
−1. In the reference medium, a

plane P-wave is described by its frequency ω and direction of travel θP = arcsin(cP 0p). The
angle θP is measured as the ray’s angle from the z-axis to the ray. Likewise, a plane S-wave
of frequency ω has direction of travel θS = arcsin(cS0p). Then,

κ−1
P = cos θP =

√
1 − (cP 0p)2,

and

κ−1
S = cos θS =

√
1 − (cS0p)2 =

√
1 −

(
cS0

cP 0

)2

sin2 θP .

The Fourier transform of equation (11) leads to the first-order wave equation (Ursin 1983,
Ikelle and Amundsen 2005)

d

dz
B(kx, ky, z) = −iωA(z)B(kx, ky, z), (15)

with field vector

B = (V T , ST )
T
, (16)

and system matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 px
1
µ

0 0

0 0 py 0 1
µ

0
λ

λ+2µ
px

λ
λ+2µ

py 0 0 0 1
λ+2µ

ρ − θp2
x − µp2 −θpxpy 0 0 0 λ

λ+2µ
px

−θpxpy ρ − θp2
y − µp2 0 0 0 λ

λ+2µ
py

0 0 ρ px py 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

In the following we omit the field’s dependence on wavenumbers.
To characterize the difference between the reference and actual media we introduce the

P-wave velocity potential

αP (z) = 1 −
(

cP 0

cP (z)

)2

, (18)
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the S-wave velocity potential

αS(z) = 1 −
(

cS0

cS(z)

)2

(19)

and the density potential

αρ(z) = ln rρ(z), rρ(z) = ρ0

ρ(z)
. (20)

The P-wave vertical slowness now can be expressed as

QP (z) = qP 
P (z),

where


P (z) = [
1 − κ2

P αP (z)
] 1

2 (21)

is a function of the P-wave potential and defines the ratio between the P-wave vertical
slownesses in the actual and reference media. Likewise, the S-wave vertical slowness is
expressed as

QS(z) = qS
S(z),

where


S(z) = [
1 − κ2

SαS(z)
] 1

2 (22)

is a function of the S-wave potential and defines the ratio between the S-wave vertical
slownesses in the actual and reference media.

We now follow a notation close to Ikelle and Amundsen (2005). The field vector B can
be decomposed into a wave vector

W = [UT , DT ]
T
, (23)

containing upgoing UT = [UP ,USV
, USH ] and downgoing DT = [DP ,DSV

,DSH ] waves by
an eigensystem analysis of the system matrix A. By inserting the flux-normalized eigenvectors
of A into the columns of the 6 × 6 matrix L, the up/down decomposition is achieved by the
linear transformation

W = L−1B, (24)

where

L−1 = L−1(p) =
(

LT
SU (p) LT

V U (p)

−LT
SU (−p) LT

V U (−p)

)
(25)

is the decomposition matrix, with p = (px, py), and

L = L(p) =
(

LV U (p) −LV U (−p)

LSU (p) LSU (−p)

)
(26)

is the composition matrix. The 3 × 3 submatrices are

LV U (p) = 1√
2

⎛
⎜⎜⎜⎜⎝

−px
1√

ρQP

px

p

√
QS

ρ

py

p
1√

µQS

−py
1√

ρQP

py

p

√
QS

ρ
−px

p
1√

µQS√
QP

ρ
p 1√

ρQS
0

⎞
⎟⎟⎟⎟⎠ , (27)

5



Inverse Problems 24 (2008) 045006 L Amundsen et al

LSU (p) = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2µpx

√
QP

ρ

px

p
(ρ − 2µp2) 1√

ρQS

py

p

√
µQS

−2µpy

√
QP

ρ

py

p
(ρ − 2µp2) 1√

ρQS
−px

p

√
µQS

(ρ − 2µp2) 1√
ρQP

2µp

√
QS

ρ
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

The eigenvalue or vertical phase slowness γ (N) is determined by solving the determinantal
equation

det
(
A − γ (N)I

) = 0. (29)

The six phase slownesses are given in pairs of opposite signs as

γ (1) = −γ (4) = QP =
√

c−2
P − p2,

γ (2) = −γ (5) = QS =
√

c−2
S − p2,

γ (3) = −γ (6) = QS =
√

c−2
S − p2.

2.1. Differential equation for W in an inhomogeneous medium

The differential equation for W in an inhomogeneous and source-free medium follows from
equation (15) as

dW (z)

dz
= [−iωΛ(z) + S(z)] W (z), (30)

where the eigenvalue decomposition of A gives the diagonal eigenvalue matrix

Λ = L−1AL = diag[QP ,QS,QS,−QP ,−QS,−QS]. (31)

The scattering matrix which has a simple form due to flux-normalization of upgoing and
downgoing waves is

S(z) = −L−1(z)
dL(z)

dz
=

(
S1(z) S2(z)

S2(z) S1(z)

)
, (32)

where

S1(z) =
⎛
⎝ 0 s+

PSV (z) 0
−s+

PSV (z) 0 0
0 0 0

⎞
⎠ , (33)

and

S2(z) =
⎛
⎝ sPP (z) −s−

PSV (z) 0
−s−

PSV (z) sSV SV (z) 0
0 0 sSHSH (z)

⎞
⎠ , (34)

with scattering coefficients

sPP (z) = 1

2

[
ρ ′(z)
ρ(z)

− Q′
P (z)

QP (z)
− 4p2 µ′(z)

ρ(z)

]
, (35)

sSV SV (z) = −1

2

[
ρ ′(z)
ρ(z)

− Q′
S(z)

QS(z)
− 4p2 µ′(z)

ρ(z)

]
, (36)
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s±
PSV (z) = −1

2

p√
QP (z)QS(z)

[
ρ ′(z)
ρ(z)

− 2(p2 ± QP (z)QS(z))
µ′(z)
ρ(z)

]
, (37)

sSHSH (z) = −1

2

[
Q′

S(z)

QS(z)
+

µ′(z)
µ(z)

]
, (38)

where the prime denotes differentiation with respect to z. The scattering coefficients can be
written as

sPP (z) = −1

2

[
d

dz
ln[rρ(z)
P (z)] + 4p2ρ−1(z)

d

dz
µ(z)

]
, (39)

sSV SV (z) = 1

2

[
d

dz
ln[rρ(z)
S(z)] + 4p2ρ−1(z)

d

dz
µ(z)

]
, (40)

s±
PSV (z) = 1

2

p√
qP qS
P (z)
S(z)

[
d

dz
rρ(z) + 2(p2 ± qP qS
P (z)
S(z))ρ

−1(z)
d

dz
µ(z)

]
,

(41)

sSHSH (z) = −1

2

d

dz
ln

[
r−1
µ (z)
S(z)

]
. (42)

Equation (30) gives the differential equations for upgoing and downgoing P- and SV-
waves, respectively,

d

dz
UP = −iωQP UP + sPP DP + s+

PSV USV − s−
PSV DSV , (43)

d

dz
DP = iωQP DP + sPP UP + s+

PSV DSV − s−
PSV USV , (44)

d

dz
USV = −iωQSUSV + sSV SV DSV − s+

PSV UP − s−
PSV DP , (45)

d

dz
DSV = iωQSDSV + sSV SV USV − s+

PSV DP − s−
PSV UP . (46)

The differential equations for upgoing and downgoing SH-waves are

d

dz
USH = −iωQSUSH + sSHSH DSH , (47)

d

dz
DSH = iωQSDSH + sSHSH USH . (48)

3. Single P–P wave scattering

Equations (43)–(46) are general differential equations for upgoing and downgoing coupled P-
and SV-waves, and they describe all possible wave arrivals in the layered medium. Likewise,
equations (47) and (48) are general differential equations for upgoing and downgoing SH-
waves. In this paper, however, our interest is to describe single P–P scattering. To this end,
we must describe the downward propagation of the incident P-wave field, and its interaction
with the upward propagating single-scattered P-wave. Then, for the incident P-wave field we

7
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neglect the coupling of the upgoing with the downgoing mode as well as the coupling to SV-
waves. Disregarding this interaction, which is called the zero-order WKBJ approximation,
gives a one-way wave equation for the incident P-wave field. The single-scattered field is
solved in the first-order WKBJ approximation, where the zero-order WKBJ approximation
incident P-wave field is substituted into the differential equation for the upgoing P-wave field.

It is convenient to characterize the phase of the incident P-wave field in terms of the
difference between wave propagation in models without and with the influence of the P-wave
velocity potential. Therefore, we introduce the WKBJ shift function for the P-wave

ξ = ξP (z) =
∫ z

−∞
dz′[1 − 
P (z′)] (49)

which describes the phase difference between the unperturbed wave in the reference medium
and the incident wave in the actual medium. The WKBJ shift function obeys the differential
equation

−2ξ ′ + (ξ ′)2 + κ−2
P αP = 0, ξ (n) = 0, n � 2. (50)

The zero of the second- and higher-order derivatives of the shift function implies that it inside
a layer must vary slowly over a wavelength.

3.1. The incident P-wave field in the zero-order WKBJ approximation

The one-way wave equation for the incident P-wave field is

dD
(0)
P (z)

dz
= iωqP 
P (z)D

(0)
P (z), (51)

with solution

D
(0)
P (z) = SP (ω) exp(iωqP [z − ξP (z)]), (52)

since the boundary condition states that just below the source, the downgoing field is that
radiated by the source:

D
(0)
P (0+) = SP (ω) = − a(ω)

2iωqP

, (53)

where a(ω) is the source strength.
The reader should note that the differential equation (51) for the incident P-wave field does

not depend on the scattering coefficient sPP . This is purely an effect of flux-normalization
of the upgoing and downgoing waves. If the upgoing and downgoing waves were amplitude
normalized as in the acoustic one-way wave equation for the incident wave field presented in
Amundsen et al (2006, equation (23)) the sPP -coefficient would be present in the differential
equation.

3.2. P–P scattering in the first-order WKBJ approximation

The differential equation for the single-scattered P-wave becomes

d

dz
U

(1)
P (z) = −iωqP 
P (z)U

(1)
P (z) + sPP (z)D

(0)
P (z). (54)

Again, note that if the differential equation (54) is reduced to the acoustic model, it would
differ slightly from the corresponding differential equation for the single-scattered acoustic
wave presented in Amundsen et al (2006, equation (30)) due to the present flux-normalization.

8
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Taking into account the radiation condition, UP (∞) = 0 (no scattered (upgoing) P-waves at
infinity) the solution for the PP-scattered field at the measurement level is

U
(1)
P (z = 0) = SP (ω)

∫ ∞

0
dzsPP (z) exp(2iωqP [z − ξP (z)]). (55)

It is convenient to express the scattered data in terms of the dimensionless scattering
amplitude 
PP = S−1

P U
(1)
P . Our objective is to analyse the changes of the elastic parameters,

and not their vertical derivatives. A partial integration of the log-derivative in equation (55)
leads to the following result for the dimensionless scattering amplitude:


PP (ω) = − ikP

2κP

∫ ∞

0
dzαPP (z) exp(2iωqP [z − ξP (z)]), (56)

where αPP (z) is an angle-dependent P–P scattering potential

αPP (z) = −2

[
ln[rρ(z)
P (z)] − 2p2[iωqP 
P (z)ρ(z)]−1 d

dz
µ(z)

]

P (z). (57)

The P–P scattering potential contains the vertical derivative of the shear modulus. For the
inversion of the data, however, we will discretize the shear modulus model in depth so that the
shear modulus and shear wave velocity can be directly recovered.

Equation (56) is a nonlinear forward model for computing the dimensionless scattering
amplitude 
PP (ω) from the potential αPP . We make the following remarks. The single-
scattering amplitude is found by performing an integral over depth over the product of an
amplitude function and a delay function. The amplitude function is the scattering potential.
The delay function consists of the product of two functions, where the first exp(2iωqP z)

accounts for two-way wave propagation of the unperturbed wave in the reference medium,
whereas the second exp[−2iωqP ξP (z)] corrects for the influence of the potential. Since the
scattered wave U

(1)
P (z) travels through the same potential αPP (z) as the incident wave D

(0)
P (z)

the shift function ξP (z) is the same for both cases. For a piecewise-constant layered medium
the delay function in the WKBJ approximation predicts the exact traveltimes of the single-
scattering events. However, performing the integral over depth, the predicted amplitudes
of the single-scattering events will not be exact for the piecewise-constant layered medium
unless the boundary conditions of continuity of the vertical traction and the particle velocity
at the interfaces are explicitly introduced. For the sake of forward modelling, the boundary
conditions easily can be accounted for. Interfaces or discontinuities in the potential are then
treated by correctly coupling the incident wave to the scattered waves. However, for the inverse
problem, where the location of interfaces is not known, it would be cumbersome to account for
the continuity conditions in an explicit manner. Therefore, as in Amundsen et al (2005, 2006)
we neglect these conditions at the expense of using a forward model that predicts slightly
incorrect amplitudes of the single-scattering events. The error can be analysed following the
procedure as detailed in Amundsen et al (2005) for the 1D wave equation.

When we later simulate data to test the inverse scattering algorithm to be described in
the following section, we do not base the simulation on the single-scattering forward model
(56), but on an exact forward model for primary reflections in a piecewise-constant layered
medium. This model is described in appendix A.

4. Inverse P–P scattering

In this section, we develop a procedure for reconstructing the velocity and density profiles from
the dimensionless scattering amplitude 
PP recorded in an acoustic reference medium above
an elastic stratified medium. As in the acoustic case described in Amundsen et al (2006) the

9
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elastic solution can be obtained in three steps. First, the angle-dependent Born potential αBPP

is computed from the scattered field in the time intercept-slowness domain using the constant
reference medium. Second, we show that the squeezed P-wave velocity potential profile α̂P ,
the related squeezed P-wave velocity profile ĉP , and the squeezed S-wave velocity and density
profiles, ĉS and ρ̂, respectively, can be estimated from the residual moveout-corrected Born
potential. Third, the squeezed profiles can be depth corrected by applying a nonlinear stretch
function. The three steps require no information about the subsurface parameters except the
reference medium parameters.

4.1. The angle-dependent Born potential and the single-scattering data

As in Amundsen et al (2006) we first establish a relationship between the angle-dependent
Born potential and the single-scattering data. By the expression Born approximation it is
understood that the exact incident P-wave is replaced by the incident P-wave exp(iωqP z) of
the reference medium. In the forward model developed in this paper, the Born approximation
translates to setting the shift function in the forward model (55) to zero,

ξP (z) ≡ 0. (58)

In appendix C it is shown that Born forward model can be written as


PP (ω, p) = − iωqP

2

∫ ∞

0
dzαBPP(p, z) exp(2iωqP z), (59)

with single-scattering Born potential

αBPP(z) = −2 ln[rρ(z)
P (z)fµ,ρ(z)], (60)

where

fµ,ρ(z) = exp

[
4p2

∞∑
i=0

�µ(zi)

ρ(zi)
H(z − zi)

]
, (61)

and H(z) is the Heaviside function.
To obtain the compact form of the Born potential, free of any vertical derivative of shear

modulus, we have discretized the shear modulus model, with zi = i�z, such that

µ(z) =
∞∑
i=0

�µ(zi)H(z − zi), (62)

where

�µ(zi) = µ(zi) − µ(zi−1), (63)

with derivative
d

dz
µ(z) =

∞∑
i=0

�µ(zi)δ(z − zi). (64)

As shown in Amundsen et al (2006) the Born potential is obtained by constant-velocity
migration or linear migration–inversion of the scattering data according to

αBPP(p, z) = 4
∫ 2z/vP 0(p)

−∞
dt
PP (t, p), (65)

where vP 0 = cP 0/
√

1 − (cP 0p)2 = cP 0/cosθP is the apparent velocity in the reference
medium of the plane wave along the depth axis.

Equation (65) is a key equation in the inversion procedure. In constant-velocity migration
primary reflection events are placed at depths computed linearly using their traveltimes together
with the constant reference velocity. In the following section, we shall see that the Born
potential is the ticket for determining the values of elastic layered parameters.

10
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4.2. Nonlinear AVA inversion: estimation of squeezed profiles α̂P , ĉP , ĉS and ρ̂ from αBPP

We now show that we can predict what the layer P-wave velocity, S-wave velocity, and density
are, not as function of their true depth, but as function of the interface depths provided by
the Born PP-wave potential at zero incidence angle. These profiles which are predicted from
αBPP at three different incidence angles are called ‘squeezed’ P-wave velocity, S-wave velocity
and density profiles, denoted by α̂P , ĉP , ĉS and ρ̂, respectively, because they can be seen as
the profiles that would be obtained by compressing or squeezing the depth axis of the actual
velocity and density profiles.

Before we proceed we make one remark. After constant-velocity imaging of the scattered
data, one obtains one Born depth profile for every selected angle (or slowness). The first
interface is always lined up at the correct depth, say z1, in every Born depth profile. (The first
primary travels in the reference medium only.) The second and following interfaces will show
some residual moveout across the Born depth profiles. Since we aim at predicting the squeezed
profiles α̂P , ĉP , ĉS and ρ̂ as function of vertical depth from αBPP at minimum three different
incidence angles, the interface residual moveout must be corrected before the prediction can
be done. The residual moveout correction does not affect the variation in amplitude with
respect to angle of the Born potential.

Recalling that αBPP is a function of radial slowness p, or equivalently, angle θP , we find

αBPP(θP , z) = −ln
(
r̂2
ρ(z)[1 − sec2 θP α̂P (z)]f̂ 2

µ,ρ(θP , z)
)
. (66)

We make two comments. First, the relation between the Born potential and the squeezed
velocity and density profiles is ‘exact’ within the limitations of the forward model which
among others assumes perfect transmission. Further, the relation is nonlinear; it is not
linearized in any way with respect to changes in the elastic parameters as is commonly done
in seismic amplitude versus angle analysis. Second, the relationship has not been derived by
assuming that the single scattering is from a smoothly changing medium. Interfaces with step-
discontinuities in the medium parameters can be (and is) present. Thus, there is no requirement
of small contrasts in the elastic parameters across interfaces. Therefore, the relation (66) is
the ticket to determining the elastic parameters.

From equation (66) it follows that

r̂2
ρ(z)f̂ 2

µ,ρ(θP , z)[1 − sec2 θP α̂P (z)] = exp[−αBPP(θP , z)]. (67)

When the Born depth profile is known for three angles of incidence θP 0, θP 1 and θP 2, the
squeezed P-wave velocity potential is the solution of the algebraic equation(

1 − sec2 θP 2α̂P (z)

1 − sec2 θP 1α̂P (z)

)sin2 θP 0 (
1 − sec2 θP 0α̂P (z)

1 − sec2 θP 2α̂P (z)

)sin2 θP 1 (
1 − sec2 θP 1α̂P (z)

1 − sec2 θP 0α̂P (z)

)sin2 θP 2

= exp[(sin2 θP 0 − sin2 θP 2)(αBPP(θP 1, z) − αBPP(θP 0, z))

− (sin2 θP 0 − sin2 θP 1)(αBPP(θP 2, z) − αBPP(θP 0, z))] (68)

which can iteratively be solved by Newton’s method. The associated squeezed P-wave velocity
profile is

ĉP (z) = cP 0[1 − α̂P (z)]−
1
2 . (69)

From the Born depth profile at θP 0 = 0 and the estimated squeezed velocity potential
profile α̂P , the density ratio straightforwardly can be computed as

ρ̂(z)

ρ0
= r̂−1

ρ (z) = [1 − α̂P (z)]
1
2 exp

[
1

2
αBPP(θP 0 = 0, z)

]
. (70)

11
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The shear modulus can be estimated from the equation

f̂µ,ρ(z) =
(

exp[− 1
2αBPP(θP 1, z)]

r̂ρ(z)[1 − sec2 θP 1α̂P (z)]
1
2

)
, (71)

where θP 1 �= 0. This gives

∑
i

�µ(zi)

ρ(zi)
H(z − zi) =

(
cP 0

2 sin θP 1

)2

ln

(
exp

[− 1
2αBPP(θP 1, z)

]
r̂ρ(z)[1 − sec2 θP 1α̂P (z)]

1
2

)
. (72)

By letting z− = z − �z the S-wave velocity estimate is given from the equation

c2
S(z) = ρ(z−)

ρ(z)
c2
S(z

−) +

(
cP 0

2 sin θP 1

)2

ln

[
ρ(z)

ρ(z−)

(
1 − sec2 θP 1α̂P (z−)

1 − sec2 θP 1α̂P (z)

) 1
2

× exp

(
1

2
[αBPP(θP 1, z

−) − αBPP(θP 1, z)]

) ]
. (73)

4.3. Residual depth imaging: stretching of the squeezed profiles towards the actual profiles

The nonlinear AVA analysis has determined the squeezed velocity potential α̂P and the
squeezed P-wave velocity, S-wave velocity and density, ĉP , ĉS and ρ̂, respectively. The
residual depth imaging step for the elastic data is identical to that for acoustic data developed
in Amundsen et al (2006). Residual depth imaging of the velocity and density profiles is given
as, respectively,

α̂P (z) = αP

(
z +

∫ z

−∞
dz′[(1 − α̂P (z′))−

1
2 − 1]

)
, (74)

ĉP (z) = cP

(
z +

∫ z

−∞
dz′[(1 − α̂P (z′))−

1
2 − 1]

)
= cP

(
c−1
P 0

∫ z

−∞
dz′ĉP (z′)

)
, (75)

ĉS(z) = cS

(
z +

∫ z

−∞
dz′[(1 − α̂P (z′))−

1
2 − 1]

)
= cS

(
c−1
P 0

∫ z

−∞
dz′ĉP (z′)

)
(76)

and

ρ̂(z) = ρ

(
z +

∫ z

−∞
dz′[(1 − α̂P (z′))−

1
2 − 1]

)
= ρ

(
c−1
P 0

∫ z

−∞
dz′ĉP (z′)

)
. (77)

Thus, provided that the Born potential has been computed according to equation (65), then
equations (74)–(77) suggest a two-step procedure for estimating the medium. First, the
squeezed profiles α̂P , ĉP , ĉS and ρ̂ are estimated by nonlinear AVA analysis of the Born
potential. Then the actual velocity and density profiles αP , cP , cS , and ρ are derived by
applying a nonlinear shift according to equations (74)–(77). The nonlinear shift is seen to
correspond to stretching the depth axis of the squeezed profiles. The effect of stretching is to
locate interfaces that are mislocated in α̂P , ĉP , ĉS and ρ̂ towards their correct location. Thus,
in the absence of the actual P-wave velocity function, the nonlinear AVA analysis and depth
imaging (stretch) algorithm extract the necessary information from the angle-dependent Born
depth profile αB(z).

12
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Table 1. Fifteen-layer model, with reference velocities cP 0 = 1500 m s−1 and cS0 = 0 m s−1

and density ρ0 = 1000 kg m−3. Here, zn is the actual layer depth, znB(0) is the layer depth
from zero-angle Born constant-velocity imaging, ẑn is the estimated actual layer depth, cPn is the
actual layer P-wave velocity, ĉPn is the estimated layer P-wave velocity, εcPn

is relative error of the
layer P-velocity estimate, cSn is the actual layer S-wave velocity, ĉSn is the estimated layer S-wave
velocity, εcSn

is relative error of the layer S-velocity estimate, ρn is the actual layer density, ρ̂n is
the estimated layer density and ερn is relative error of the layer density estimate.

zn znB(0) ẑn cPn ĉPn εcPn
cSn ĉSn εcSn

ρn ρ̂n ερn

n [m] [m] [m] [m s−1] [m s−1] [%] [m s−1] [m s−1] [%] [kg m−3] [kg m−3] [%]

0 0 – – 1500 – – 0 – – 1000 –
1 300 300.0 300 1525 1525 0.0 50 49 −1.6 1025 1025 0.0
2 310 309.8 310 1550 1550 0.0 75 74 −0.8 1050 1050 0.0
3 320 319.5 320 1600 1600 0.0 100 99 −0.6 1100 1100 0.0
4 330 328.9 330 1675 1663 −0.7 300 276 −8.0 1150 1158 0.7
5 350 346.8 350 1775 1747 −1.6 500 462 −7.5 1225 1243 1.5
6 375 367.9 375 1900 1858 −2.2 700 653 −6.8 1300 1326 2.0
7 400 387.7 399 2000 1948 −2.6 900 861 −4.4 1600 1632 2.0
8 500 462.7 497 2000 1949 −2.5 1100 1059 −3.7 1900 1926 1.4
9 600 537.7 594 2200 2163 −1.7 1200 1172 −2.3 2000 1999 0.0

10 700 605.8 692 2600 2558 −1.6 1250 1254 0.3 2400 2355 −1.9
11 800 663.5 791 2300 2312 0.5 1300 1310 0.7 2400 2325 −3.1
12 1000 794.0 991 2200 2209 0.4 1250 1253 0.2 2300 2245 −2.4
13 1100 862.2 1093 2400 2341 −2.4 1200 1181 −1.6 2200 2203 0.1
14 1200 924.7 1190 2500 2444 −2.2 1250 1238 −0.9 2300 2284 −0.7

5. Model calculations

As an example of nonlinear direct AVA analysis and data-driven depth imaging with objective
to estimate the depth-dependent velocities and density, from the single-scattering data, we
consider the high-velocity/high-density contrast piecewise-constant 15-layer elastic medium
displayed in figure 1 and listed in table 1. The reference velocities and density (in layer zero)
are cP 0 = 1500 m s−1, cS0 = 0 m s−1 and ρ0 = 1000 kg m−3, respectively. The model has
some properties that should be noted. The P-wave velocity is the same in layers eight and nine,
whereas the density is the same in layers 11 and 12. In addition, there is a P-wave velocity
increase but density decrease between layers 13 and 14.

In the example, perfect data are modelled directly in the time intercept-slowness domain
with the algorithm described in appendix A. Observe that when the method be applied
to real data recorded in the physical time-space domain, the data must go through three
basic preprocessing steps. First, the data must be transformed from time-space to time
intercept-slowness domain. This step can be performed by using the discrete fast Radon
transform described in Ikelle and Amundsen (2005, appendix D). Second, multiples (multiple
scattered waves) must be eliminated and third, the radiation pattern of the source described in
equation (53) must be removed.

The primary reflection data from the model are plotted in figure 2 as traces as function
of angle, ranging from 0◦ to 30◦, for infinite bandwidth. The related angle-dependent Born
potential is obtained by constant-velocity migration of each of the angle-traces. Figure 3 shows
a selection of Born potential depth profiles for angles of 0◦, 10◦, 20◦ and 30◦. Observe that the
first interface is correctly positioned in depth (at z1 = 300 m) in all the angle-profiles since
the primary from the first interface always propagates with the reference velocity. The other
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Figure 1. Actual model: (a) P-wave velocity, cP (z), (b) S-wave velocity, cS(z) and (c) density,
ρ(z). The model is listed in table 1.

interfaces are generally severely mislocated in depth. In addition, the image depth of these
interfaces varies with angle, in the predictable way that the depth decreases with increasing
angle. This behaviour we call interface residual moveout. Before any AVA analysis the
interface residual moveout should be corrected so that all Born depth profiles have interface
depths matching the interface depths of the zero-angle Born depth profile. Since the number
of interfaces is the same in every Born depth profile, the residual moveout correction to apply
can easily be found, for instance, by applying edge-detection techniques to each individual
profile. Figure 4 shows the residual moveout-corrected angle gather of Born potential depth
profiles corresponding to the gather in figure 3. In figure 4 gather, the interfaces are positioned
at the same depth, but still the amplitudes of the residual moveout-corrected Born profiles
differ as function of angle. The amplitude variation versus angle is the basis for estimating
the squeezed depth-dependent velocity and density profiles. In the present study, we use
only the moveout corrected angle-Born profiles at 0◦, 10◦ and 20◦ to estimate the squeezed
profiles. Figure 5 displays the squeezed velocity and density profiles. For comparison, the
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Figure 2. Angle gather of primary reflection events as function of time-intercept from the 15 layer
model in figure 1.
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Figure 3. Angle gather of Born potential depth profiles. Red, pink, green and blue colours
represent angles of incidence of 0◦, 10◦, 20◦ and 30◦, respectively.
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Figure 4. Moveout corrected angle gather of Born potential depth profiles corresponding to the
gather in figure 3. Red, pink, green and blue colours represent angles of incidence of 0◦, 10◦, 20◦
and 30◦, respectively.
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Figure 5. Nonlinear AVA inversion of the moveout-corrected angle-dependent Born potential
(at 0◦, 10◦ and 20◦; see figure 4) gives squeezed (a) P-wave velocity, (b) S-wave velocity and
(c) density.

zero-angle Born potential profile is shown in the same figure. Evidently, the depth of the
interfaces of the squeezed profiles and the zero-angle Born profile matches. Observe that
the estimated velocities and density, presented in table 1 together with the actual velocities
and density cPn, cSn and ρn, respectively, display the same properties as the true parameters.
The estimated layer velocities and density are at maximum approximately two-three per
cent off.

From the squeezed P-wave potential, the actual velocities and density can be estimated in
the WKBJ approximation by residual depth imaging, amounting to stretching the depth axis
of the squeezed profiles using the amplitude of the squeezed P-wave velocity potential only.
The results, both for velocities and density, are shown in figure 6. The estimated interface
depth ẑn is summarized in table 1.
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Figure 6. Residual depth imaging: stretching the squeezed profiles displayed in figure 5: (a)
estimated P-wave velocity, (b) estimated S-wave velocity and (c) estimated density. The estimated
curves are shown in red lines. For comparison, the actual models are displayed in black lines.

6. Conclusions

We have derived the forward model for elastic single P–P scattering from a depth-variable
elastic medium in the WKBJ approximation. We have shown that the elastic inverse scattering
problem can be solved in three main steps. First, from the single-scattering data in the
time intercept-slowness domain, an angle-dependent Born potential profile is computed by
constant-velocity imaging. Second, from the angle-dependent residual moveout-corrected
Born potential depth profiles nonlinear direct AVA analysis is used to estimate depth-dependent
squeezed velocity and density profiles. A squeezed profile contains information of the
amplitude of the corresponding actual profile, not within the actual profile layer interfaces, but
within the layer interfaces of the zero-angle profile of the Born potential. Third, the mislocated
reflectors in the squeezed profiles are moved with high precision towards their correct spatial
location by applying a nonlinear stretch function. The nonlinear AVA analysis and data-driven
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depth imaging require no information of the medium other than the angle-dependent Born
potential. In the nomenclature of seismic data processing the three steps can be described by
the sequence constant-velocity (partial) migration–inversion–residual migration.

A simple model example showed how the velocities and densities could be estimated in
the WKBJ approximation, from the angle-dependent Born potential. Even for high-velocity
and high-density contrast media (strong potentials), the theory gives an inverse scattering
procedure that reconstructs the medium and its properties to a good approximation.
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Appendix A. Modelling of the PP-wave reflection response

We consider plane P-wave propagation with slowness (ray parameter) p = sin θP /cP 0 through
a medium with N + 1 homogeneous layers with constant layer velocities cP n and cSn, and
density ρn and thicknesses hn. The source and receivers are both located at depth z = 0 in the
zeroth layer which is the reference medium with velocities cP 0 and cS0 and density ρ0.

Together with proper boundary conditions, the differential equations (43) and (44) show
that the wave field is made up of an infinite sum of reflections and refractions inside the
medium (cf Bremmer (1951) and Santos et al (1996)). In what follows we show how to model
the primary PP-wave reflection response, that is, the P-waves that are split off by reflection
from the downgoing source P-wavefield when it is transmitted into the medium. To this end, it
is necessary to define the P-wave reflection and transmission coefficients in the stack of layers
(see appendix B). For a plane P-wave incident in layer n − 1, the reflection and transmission
coefficients are denoted by Rn(p) and T (D)

n (p). We will also need that a wave transmitted
in the opposite direction, upwards from layer n into layer n − 1, has transmission coefficient
T (U)

n (p). Then, the two-way transmission loss for a plane wave passing down and up through
the interface at depth zn is T (D)

n (p)T (U)
n (p). The apparent velocity in layer n along the depth

axis is

vPn(p) = cP n√
1 − (cPnp)2

.

When the source is initiated with unit strength a plane P-wave propagates downwards
with velocity cP 0 into the discontinuous, layered medium. At the boundary of the first layer,
at depth z1 = h0, the incident wave which is represented by

D0(ω, p) = exp[iωh0/vP 0(p)],

is split into [I] a refracted wave penetrating into this layer with amplitude T
(D)

1 (p) and
represented by

D1(ω, p) = D0(ω, p)T
(D)

1 (p) exp[iω(z − z1)/vP 1(p)], z1 < z < z2,

and [II] a reflected wave with amplitude R1(p) returning to the receiver level where it is
represented by


1(ω, p) = R1(p) exp[2iωh0/vP 0(p)].

The downgoing wave D1(ω, p) will be split at the next interface at depth z2 into a refracted
wave

D2(ω, p) = D1(ω, p)T
(D)

2 (p) exp[iω(z − z2)/vP 2(p)], z2 < z < z3,
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penetrating into layer 2, and a reflected wave which, after being refracted through the interface
at depth z1 returns to the receiver level with representation


2(ω, p) = R2(p)T
(D)

1 (p)T
(U)

1 (p) exp[2iωh1/vP 1(p)] exp[2iωh0/vP 0(p)].

This procedure of splitting is repeated at each next interface. The chain of wave consisting of
the sequence 
1,
2, . . . , 
N is the primary PP reflection response. One reflection response
is obtained for each slowness.

In the frequency-slowness domain the N events of the dimensionless scattering amplitude
can be is modelled as


PP (ω, p) =
N∑

n=1


n(ω, p) =
N∑

n=1

R̂n(p) exp

(
2iω

n−1∑
m=0

hm

vPm(p)

)
, (A.1)

where each wave has the form of the product of an amplitude function and a delay function,
both depending only on slowness. The frequency dependency comes only as a complex
exponential due to the delay. The amplitude of the wave from the interface at depth zn is
the product of the plane-wave reflection coefficient at zn and the transmission coefficients
encountered by the wave, namely

R̂1(p) = R1(p), R̂n(p) = Rn(p)

n−1∏
j=1

T
(D)
j (p)T

(U)
j (p), n = 2, 3, . . . , N. (A.2)

Performing an inverse Fourier transform over frequency, the dimensionless scattering
amplitude in the time intercept-slowness domain becomes


PP (t, p) =
N∑

n=1

R̂n(p)δ(t − τn(p)), (A.3)

where δ(t) is the Dirac delta-function. The arrival time (called time-intercept) of the primary
P-wave reflection from depth zn is

τn(p) = 2
n−1∑
m=0

hm

vPm(p)
.

(In time-space domain, τ is the time-intercept of the tangent line with slope p with the time
axis.)

Appendix B. PP plane-wave reflection and transmission coefficients

This appendix gives the PP-wave reflection and transmission coefficients at a solid–solid and
fluid–solid interface between layers 1 and 2 in terms of radial slowness p. The reader is
referred to Ikelle and Amundsen (2005) for a derivation of the coefficients.

B.1. Solid–solid interface

Introduce the vertical slownesses

QP 1 =
√

c−2
P 1 − p2 : P-wave, layer 1

QS1 =
√

cS1
−2 − p2 : S-wave, layer 1

QP 2 =
√

cP 2
−2 − p2 : P-wave, layer 2

QS2 =
√

cS2
−2 − p2 : S-wave, layer 2
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and the functions

d1 = 2p2�µ(QP 1 − QP 2) + (ρ1QP 2 + ρ2QP 1)

d2 = 2p2�µ(QS1 − QS2) + (ρ1QS2 + ρ2QS1)

d3 = p[2�µ(QP 1QS2 + p2) − �ρ]

d4 = p[2�µ(QP 2QS1 + p2) − �ρ]

c1 = 2p2�µ(QP 1 + QP 2) − (ρ1QP 2 − ρ2QP 1)

c3 = −p[2�µ(QP 1QS2 − p2) + �ρ]

with contrast parameters �µ = µ1 − µ2 and �ρ = ρ1 − ρ2. The P-wave reflection and
transmission coefficients for a downward-travelling incident plane wave in layer are

R = c1d2 − c3d4

d1d2 + d4d3
,

and

T (D) = 2ρ1QP 1d2

d1d2 + d4d3
.

The transmission coefficient for an upward travelling incident plane wave in layer 2 is

T (U) = 2ρ2QP 2d2

d1d2 + d4d3
.

B.2. Fluid–solid interface

The coefficients at a fluid–solid interface are found from those at the solid–solid interface in
the limit VS1 = 0. Introducing

A1 = (1 − 2p2cS2
2)2 = B2, A2 = 4p2ρ2cS2

4QS2, B = 1 − 2p2cS2
2,

we find

R = A1ρ2QP 1 + A2QP 1QP 2 − ρ1QP 2

A1ρ2QP 1 + A2QP 1QP 2 + ρ1QP 2
,

T (D) = 2Bρ1QP 1

A1ρ2QP 1 + A2QP 1QP 2 + ρ1QP 2

and

T (U) = 2Bρ2QP 2

A1ρ2QP 1 + A2QP 1QP 2 + ρ1QP 2
.

Appendix C. The Born potential

By setting

ξP (z) ≡ 0 (C.1)

in the forward model (55) the Born approximation model is obtained,


PP (ω, p) =
∫ ∞

0
dzsPP (p, z) exp(2iωqP z), (C.2)
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where sPP is given in equation (39). Performing a partial integration over the first term of

PP , one obtains


PP (ω, p) = − iωqP

2

∫ ∞

0
dz αBPP(p, z) exp(2iωqP z), (C.3)

where the single-scattering Born potential

αBPP(p, z) = αBPPA(p, z) +
1

2iωqP

αBPPE(p, z) (C.4)

consists of acoustic and elastic-related parts, respectively,

αBPPA(p, z) = −2 ln[rρ(z)
P (p, z)] (C.5)

and

αBPPE(p, z) = 8p2ρ−1(z)
d

dz
µ(z). (C.6)

Our objective is now to invert equation (C.3) for the Born potential.
Consider the inverse Fourier transform over frequency of equation (C.3), that is,

2

π

∫ ∞

−∞
dω exp(−iωt)


PP (ω, p)

−iω
=

∫ ∞

0
dz′ 1

2π

∫ ∞

−∞
dω′

×
[
αBPPA(p, z′) +

1

iω′ αBPPE(p, z′)
]

exp

[
−iω′

(
t

2qP

− z′
)]

, (C.7)

where ω′ = 2ωqP . By evaluating the integrals over frequency we obtain

4
∫ 2z/vP 0(p)

−∞
dt
PP (t, p) =

∫ ∞

0
dz′[αBPPA(p, z′)δ(z − z′) − αBPPE(p, z′)H(z − z′)],

(C.8)

where H(z) is the Heaviside function. We have introduced z = t/(2qP ) = vP 0t/2 and
vP 0 = cP 0/

√
1 − (cP 0p)2 = cP 0/ cos θP is the apparent velocity of the plane wave along the

depth axis.
We now assume a discretized shear modulus model, with zi = i�z, which is represented

by

µ(z) =
∞∑
i=0

�µ(zi)H(z − zi), (C.9)

where

�µ(zi) = µ(zi) − µ(zi−1), (C.10)

with derivative

d

dz
µ(z) =

∞∑
i=0

�µ(zi)δ(z − zi), (C.11)

so that

αBPPE(p, z) = 8p2
∞∑
i=0

�µ(zi)

ρ−1(zi)
δ(z − zi). (C.12)

Equation (C.8) then becomes

4
∫ 2z/vP 0(p)

−∞
dt
PP (t, p) = αBPPA(p, z) − 8p2

∞∑
i=0

�µ(zi)

ρ(zi)

∫ ∞

0
dz′H(z − z′)δ(z′ − zi).

(C.13)
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Inserting equation (C.5) and evaluating the integral on the right-hand side of equation (C.13)
yield

4
∫ 2z/vP 0(p)

−∞
dt
PP (t, p) = −2 ln[rρ(z)
P (p, z)] − 8p2

∞∑
i=0

�µ(zi)

ρ(zi)
H(z − zi), (C.14)

The Born potential, per definition, is Amundsen et al (2006)

αBPP(p, z) = 4
∫ 2z/vP 0(p)

−∞
dt
PP (t, p). (C.15)

Equation (C.15) which is a key equation in the inversion procedure is known as constant-
velocity migration or linear migration–inversion.

Finally, by introducing

fµ,ρ(z) = exp

[
4p2

∞∑
i=0

�µ(zi)

ρ(zi)
H(z − zi)

]
, (C.16)

the Born potential can be written compactly as

αBPP(z) = −2 ln[rρ(z)
P (z)fµ,ρ(z)]. (C.17)

In section 4.2, we shall see that the Born potential is the ticket for determining the elastic
parameters.

C.1. Depth of interfaces after constant-velocity migration

After constant-velocity migration primary reflection events are placed at depths computed
linearly using their traveltimes together with the constant reference velocity. This is readily
verified by substituting the primary reflection response (A.3) into equation (C.15). One obtains

αBPP(p, z) = 4
N∑

n=1

R̂n(p)H(z − znBPP(p)), (C.18)

where znBPP is the depth at which the reference velocity cP 0 images the nth reflector,

znBPP(p) = vP 0(p)

n−1∑
m=0

hm

vPm(p)
.

The Born-estimated thickness of layer m thus is

hmB(p) = vP 0(p)

vPm(p)
hm.

Observe that the first reflector is imaged at its correct depth for all slowness (or angle) traces,

z1BPP = h0 = z1,

which is obvious since αP (z) = 0 for z < z1.
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